Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Environ Geochem Health ; 46(4): 126, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483641

RESUMO

The migration of organochlorine pesticides (OCPs) and cypermethrin residues from internal organs to edible tissues of ice-held Labeo rohita (rohu) was investigated in this study. The liver (246 µg/kg) had the highest level of ∑OCP residues, followed by the gills (226 µg/kg), intestine (167 µg/kg), and muscle tissue (54 µg/kg). The predominant OCPs in the liver and gut were endosulfan (53-66 µg/kg), endrin (45-53 µg/kg), and dichloro-diphenyl-trichloroethane (DDT; 26-35 µg/kg). The ∑OCP residues in muscle increased to 152 µg/kg when the entire rohu was stored in ice, but they decreased to 129 µg/kg in gill tissues. On days 5 and 9, the total OCPs in the liver increased to 317 µg/kg and 933 µg/kg, respectively. Beyond day 5 of storage, total internal organ disintegration had led to an abnormal increase in OCP residues of liver-like mass. Despite a threefold increase in overall OCP residues by day 9, accumulation of benzene hexachloride (BHC) and heptachlor was sixfold, endrin and DDT were fourfold, aldrin was threefold, and endosulfan and cypermethrin were both twofold. Endosulfan, DDT, endrin, and heptachlor were similarly lost in the gills at a rate of 40%, while aldrin and BHC were also lost at 60 and 30%, respectively. The accumulation of OCP residues in tissues has been attributed to particular types of fatty acid derivatives. The study concluded that while pesticide diffusion to edible tissues can occur during ice storage, the levels observed were well below the allowable limit for endosulfan, endrin, and DDT.


Assuntos
Hidrocarbonetos Clorados , Resíduos de Praguicidas , Praguicidas , Piretrinas , Animais , Aldrina/análise , DDT/análise , Endossulfano/toxicidade , Endossulfano/análise , Endrin , Monitoramento Ambiental , Heptacloro/análise , Hexaclorocicloexano , Hidrocarbonetos Clorados/toxicidade , Hidrocarbonetos Clorados/análise , Gelo , Resíduos de Praguicidas/análise , Praguicidas/toxicidade , Praguicidas/análise
2.
Environ Res ; 251(Pt 2): 118726, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38518911

RESUMO

Dye-sensitized solar cell (DSSC) using algal photosynthetic pigments has got rampant attention as it converts sunlight into electricity. Therefore, in this present research, the neutral lipid extracted from the green alga Scenedesmus sp. was used for biodiesel production, and concurrently, pigments extracted from the de-oiled biomass cake were used as a sensitizer in DSSC to evaluate its performance efficacy with and without PVDF (Polyvinylidene fluoride). Initially, neutral lipids extracted from the Scenedesmus sp. were converted to biodiesel with a yield of 72.9%, and the de-oiled biomass was subjected to pigment extraction (17.65 mg/g) to use as a sensitizer in DSSC. This study proposes two DSSC test models, i.e., PVDF (Polyvinylidene fluoride) - bound cell and cell without any PVDF binder. For the PVDF-coated DSSC, the average energy conversion efficiency reached about 14.3%, the open circuit voltage was 0.55 V, and the short circuit current was 144.5 mA. The unbound cells showed a reduction in efficiency, voltage, and current, and notably, efficiency of 10.44% on day 1 was decreased to 3.32%, and the open circuit voltage and short circuit current of 0.38V and 144 mA were decreased to 0.24V and 130 mA after 10 days, under 40 mW/cm2 input power. The PVDF-coated solar cell has maintained its efficiency range of 16.32%-11.22%, which is higher than the PVDF-unbound cell for a tested timeline of 30 days. The fill factor of 0.47 was observed in PVDF- unbound DSSC under 40 mW/cm2 as input power, while it was increased to 0.577 when PVDF was used as a binder. The PVDF-coated cell has low degradation compared with the PVDF-uncoated cell. These results offer dual benefits as the production of biodiesel from microalgal lipids and electricity generation from the DSSC using the pigments of biodiesel-extracted algal biomass.

3.
Environ Res ; 251(Pt 2): 118729, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492832

RESUMO

The study was carried out to evaluate the effectiveness of the Aristolochia bracteolata water flower extract-mediated AgNPs synthesis and assess their antimicrobial potential. According to the experimental and analytical results, A. bracteolata flower extract can produce valuable AgNPs. The characteristic features of these AgNPs were assessed with UV-visible spectrophotometer, Fourier transform-infrared spectroscopy, Transmission Electron Microscope, Scanning Electron Microscopy, as well as. Under UV-vis. spectrum results, showed major peak at 430 nm and recorded essential functional groups responsible for reducing, capping, and stabilizing AgNPs by FT-IR analysis. In addition, the size and shape of the synthesized AgNPs were found as 21.11-25.17 nm and spherical/octahedral shape. The A. bracteolata fabricated NPs showed remarkable antimicrobial activity against fish bacterial pathogens (V. parahaemolytics, Serratia sp., B. subtilis, and E. coli) as well as common fungal pathogens (A. niger, C. albicans, A. flavus, and A. terreus) at the quantity of 100 µg mL-1 than positive controls. Nevertheless, it was not effective against human bacterial pathogens. It concludes that AgNPs synthesized from A. bracteolata aqueous flower extract have excellent antimicrobial activity and may have a variety of biomedical applications.

4.
Chemosphere ; 352: 141352, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307332

RESUMO

Benzopyrene (BaP) stands as a potent polycyclic aromatic hydrocarbon (PAH) molecule, boasting five fused aromatic rings, making its way into the human food chain through soil contamination. The persistent environmental presence of PAHs in soil, attributed to industrial exposure, is primarily due to their low molecular weight and hydrophobic nature. To preemptively address the entry of BaP into the food chain, the application of nanocomposites was identified as an effective remediation strategy. Post-synthesis, comprehensive characterization tests employing techniques such as UV-DRS, XRD, SEM-EDX, FTIR, and DLS unveiled the distinctive features of the g-C3N4-SnS nanocomposites. These nanocomposites exhibited spherical shapes embedded on layers of nanosheets, boasting particle diameters measuring 88.9 nm. Subsequent tests were conducted to assess the efficacy of eliminating benzopyrene from a combination of PAH molecules and g-C3N4-SnS nanocomposites. Varied parameters, including PAH concentration, adsorbent dosage, and suspension pH, were systematically explored. The optimized conditions for the efficient removal of BaP utilizing the g-C3N4-SnS nanocomposite involved 2 µg/mL of benzopyrene, 10 µg/mL of the nanocomposite, and a pH of 5, considering UV light as the irradiation source. The investigation into the mechanism governing BaP elimination closely aligned with batch adsorption results involved a thorough exploration of adsorption kinetics and isotherms. Photocatalytic degradation of benzopyrene was achieved, reaching a maximum of 86 % in 4 h and 36 % in 2 h, with g-C3N4-SnS nanocomposite acting as the catalyst. Further validation through HPLC data confirmed the successful removal of BaP from the soil matrix.


Assuntos
Grafite , Nanocompostos , Compostos de Nitrogênio , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Nanocompostos/química , Grafite/química , Benzo(a)pireno , Benzopirenos , Solo , Catálise
5.
Environ Geochem Health ; 46(2): 35, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227063

RESUMO

This study assesses the bioaccumulation, ecological, and health risks associated with potentially toxic metals (PTMs), including Pb, Hg, Cd, As, and Cr in Hare Island, Thoothukudi. The results revealed that the concentration of PTMs in sediment, seawater, and S. wightii ranged from 0.095 to 2.81 mg kg-1, 0.017 to 1.515 mg L-1, and 0.076 to 5.713 mg kg-1, respectively. The highest concentrations of PTMs were found in the S. wightii compared to seawater and sediment. The high bioaccumulation of Hg and As in S. wightii suggests that it can be used as a bioindicator for these elements in this region. The ecological risk indices, which include individual, complex, biological, and ecological pollution indices, suggest that Hare Island had moderate contamination with Hg and Cd. However, there are no human health risks associated with PTMs. This study examines the current ecological and health risks associated with PTMs and emphasizes the importance of regular monitoring.


Assuntos
Lebres , Mercúrio , Alga Marinha , Humanos , Animais , Bioacumulação , Cádmio , Água do Mar
6.
Environ Geochem Health ; 46(2): 37, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227114

RESUMO

The present study is an attempt to investigate the potentiality of Rhizoclonium hieroglyphicum in the removal of reactive red 239 (RR239) from aqueous solution and to assess the toxicity of the treated dye solution. Optimisation of the process variables namely dye and biosorbent concentrations, pH, temperature and incubation time for RR239 removal was performed using Response Surface Methodology (RSM) assisted Box Behnken Design (BBD) model. The recycling and regeneration efficiency of the dye adsorbed alga was evaluated using different eluents under optimized conditions. Further to understand the adsorption mechanism, isotherms, kinetics and thermodynamic studies were performed. UV-vis and FT-IR spectroscopy was employed to confirm the interaction between the adsorbate and biosorbent. The nature of the treated dye solution was assessed using phyto, microbial and brine shrimp toxicity studies. On the basis of quadratic polynomial equation and response surfaces given by RSM, 90% decolorization of RR239 was recorded at room temperature under specified optimal conditions (300 mg/L of dye, 500 mg/L of biosorbent, pH 8 and 72 h of contact time). Desorption experiments demonstrated 88% of RR239 recovery using 0.1 N acetic acid as an eluent and 81% of dye removal in regeneration studies. The data closely aligned with Freundlich isotherm (R2 - 0.98) and pseudo-second-order kinetic model (R2 - 0.9671). Thermodynamic analysis revealed that the process of adsorption was endothermic, spontaneous, and favorable. UV-Vis and FT-IR analyses provided evidence for adsorbate-biosorbent interaction, substantiating the process of decolorization. In addition, the results of phyto, microbial and brine shrimp toxicity assays consistently confirmed the non-toxic nature of the treated dye. Thus, the study demonstrated that R. hieroglyphicum can act as a potent bioremediation agent in alleviating the environmental repercussions of textile dyeing processes.


Assuntos
Clorófitas , Animais , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Temperatura , Ácido Acético , Artemia
7.
Chemosphere ; 350: 141122, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184078

RESUMO

A few PAHs (polycyclic aromatic hydrocarbons) which are known to be pervasive and are of high priority are found to be detrimental pollutants having high potential in the destruction of the network. Hence, photocatalytic disintegration of these PAHs, namely benzo [a]pyrene, found in water is explored. A novel nanocomposite of Ag-Ni on g-C3N4 was fabricated. The prepared nanocomposites were characterized by techniques like UV, XRD, SEM-EDAX, FTIR, and DLS to understand their nature. The activity of the same as a catalyst in the deterioration of the benzopyrene molecule in water was investigated under different conditions including change in the concentration of the PAH, dosage of the catalyst prepared, pH of the reaction mixture, and by changing the source of irradiation. In addition, antibacterial analysis of the prepared nanocomposite material was conducted to determine whether it could be applied to environmental cleanup strategies of high quality.


Assuntos
Grafite , Nanocompostos , Compostos de Nitrogênio , Hidrocarbonetos Policíclicos Aromáticos , Prata/química , Benzo(a)pireno , Níquel , Luz , Antibacterianos/farmacologia , Antibacterianos/química , Nanocompostos/química , Água , Catálise
8.
Environ Res ; 243: 117861, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070851

RESUMO

This research was performed to evaluate the antimicrobial activity of methanol extract of Lannea coromandelica bark against fruit damage causing microbes such as fungi: Alternaria sp., Aspergillus sp., Botrytis sp., Cladosporium sp., Fusarium sp., Penicillium sp., Phytophthora sp., and Trichoderma sp. The bacteria: such as Chromobacter sp., Enterobacter sp., Erwinia sp., Flavobacterium sp., Lactobacillus sp., Pseudomonas sp., and Xanthomonas sp. was investigated. Furthermore, their biocompatibility nature was determined through animal (rat) model study and their fruit preserving potential was determined by edible coating preparation with chitosan and other substances. Interestingly, the extract showed dose dependent (1000 µg mL-1) activity against these microbes in the following order: Enterobacter sp. (26.4 ± 1.5) > Chromobacter sp. (25.4 ± 1.6) > Pseudomonas sp. (24.5 ± 1.3) > Flavobacterium sp. (24.3 ± 1.4) > Xanthomonas sp. (23.6 ± 1.6) > Erwinia sp. (23.6 ± 1.6) > Lactobacillus sp. (19.6 ± 1.3). Similarly, the antifungal activity was found as Penicillium sp. (32.6 ± 1.3) > Cladosporium sp. (32.6 ± 1.5) > Alternaria sp. (30.3 ± 1.2) > Aspergillus sp. (29.9 ± 1.8) > Botrytis sp. (29.8 ± 1.2) > Fusarium sp. (28.6 ± 1.5) > Trichoderma sp. (19.8 ± 1.4) > Phytophthora sp. (16.2 ± 1.1). The acute toxicity and histopathological study results revealed that the extract possesses biocompatible in nature. The illumination transmittance and active functional groups involved in interaction among test methanol extract and chitosan investigated by UV-vis and Fourier-transform infrared spectroscopy (FTIR) analyses and found average light transmittance and few vital functional groups accountable for optimistic interaction to creak edible coating. Approximately four (set I-IV) treatment sets were prepared, and it was discovered that all of the coated Citrus maxima fruit quality characteristics including total soluble solids (TSS), weight loss (%), pH of fruit pulp juice, and decay percentage were significantly (p>0.05) better than uncoated fruit.


Assuntos
Quitosana , Citrus , Filmes Comestíveis , Animais , Ratos , Metanol/análise , Frutas/química , Frutas/microbiologia , Quitosana/química , Casca de Planta , Antifúngicos/análise , Antifúngicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
9.
Chemosphere ; 345: 140487, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37875217

RESUMO

A sol-gel method was used to synthesize the cerium dioxide nanoparticles. The nanoparticles formed were then characterized with UV-visible spectrophotometry, Fourier Transform Infrared Spectrophotometer (FTIR), SEM-EDAX, XRD, and Dynamic Light Scattering (DLS). The UV-visible absorbance at 282 nm and characteristic peak at 600-4000 cm-1 provided insight into the formation of cerium dioxide nanoparticles using a chemical method. SEM analysis and EDAX analysis confirmed nanoparticle formation and elements within the nanoparticles based on their irregular morphology. The hydrodynamic size obtained from the DLS analysis was 178.4 nm and the polydispersity was 0.275 nm. Furthermore, XRD results confirmed the crystalline nature of cerium dioxide nanoparticles. Using batch adsorption as a method, the effect of concentration of Polycyclic Aromatic Hydrocarbons (PAH), adsorbent concentration, pH, and irradiation source was investigated. Under UV light conditions, 10 µg/mL cerium dioxide nanoparticle at pH 5 degraded 2 µg/mL of PAH (anthracene and fluorene). Consequently, the synthesized cerium dioxide nanoparticles were effective photocatalysts. For anthracene and fluorene, kinetic studies showed the degradation process followed pseudo-second-order kinetics and Freundlich isotherms. Cerium oxide also exhibited significant antimicrobial and antibiofilm activity against bacteria and fungi. As a result, the cerium dioxide nanoparticle has proved to be a highly effective photocatalytic tool for the degradation of PAHs and exhibits strong antimicrobial activity.


Assuntos
Anti-Infecciosos , Cério , Nanopartículas , Hidrocarbonetos Policíclicos Aromáticos , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas/química , Anti-Infecciosos/química , Cério/farmacologia , Cério/química , Bactérias , Fluorenos , Hidrocarbonetos Policíclicos Aromáticos/farmacologia , Antracenos , Fungos , Biofilmes
10.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834385

RESUMO

Breast cancer is the most prevalent form of cancer among women. The microenvironment of a cancer tumor is surrounded by various cells, including the microbiota. An imbalance between microbes and their host may contribute to the development and spread of breast cancer. Therefore, the objective of this study is to investigate the influence of Enterococcus faecalis on a breast cancer cell line (MCF-7) to mimic the luminal A subtype of breast cancer, using an untargeted proteomics approach to analyze the proteomic profiles of breast cancer cells after their treatment with E. faecalis in order to understand the microbiome and its role in the development of cancer. The breast cancer cell line MCF-7 was cultured and then treated with a 10% bacterial supernatant at two time points (24 h and 48 h) at 37 °C in a humidified incubator with 5% CO2. Proteins were then extracted and separated using two-dimensional difference (2D-DIGE) gel electrophoresis, and the statistically significant proteins (p-value < 0.05, fold change > 1.5) were identified via matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS). The protein fingerprints showed a differential protein expression pattern in the cells treated with E. faecalis for 24 and 48 h compared with the control. We found 58 statistically significant proteins changes in the MCF-7 breast cancer cells affected by E. faecalis. Kilin and transgelin were upregulated after 24 h of treatment and could be used as diagnostic and prognostic markers for breast cancer. In addition, another protein involved in the inhibition of cell proliferation was coiled-coil domain-containing protein 154. The protein markers identified in this study may serve as possible biomarkers for breast cancer progression. This promotes their future uses as important therapeutic goals in the treatment and diagnosis of cancer and increases our understanding of the breast microbiome and its role in the development of cancer.


Assuntos
Neoplasias da Mama , Enterococcus faecalis , Feminino , Humanos , Células MCF-7 , Proteômica/métodos , Secretoma , Eletroforese em Gel Bidimensional/métodos , Neoplasias da Mama/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Microambiente Tumoral
11.
Metabolites ; 13(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37623881

RESUMO

According to studies, the microbiome may contribute to the emergence and spread of breast cancer. E. coli is one of the Enterobacteriaceae family recently found to be present as part of the breast tissue microbiota. In this study, we focused on the effect of E. coli secretome free of cells on MCF-7 metabolism. Liquid chromatography-mass spectrometry (LC-MS) metabolomics was used to study the E. coli secretome and its role in MCF-7 intra- and extracellular metabolites. A comparison was made between secretome-exposed cells and unexposed controls. Our analysis revealed significant alterations in 31 intracellular and 55 extracellular metabolites following secretome exposure. Several metabolic pathways, including lactate, aminoacyl-tRNA biosynthesis, purine metabolism, and energy metabolism, were found to be dysregulated upon E. coli secretome exposure. E. coli can alter the breast cancer cells' metabolism through its secretome which disrupts key metabolic pathways of MCF-7 cells. These microbial metabolites from the secretome hold promise as biomarkers of drug resistance or innovative approaches for cancer treatment, either as standalone therapies or in combination with other medicines.

12.
Toxics ; 11(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37624165

RESUMO

Nitrification inhibitors are recognized as a key approach that decreases the denitrification process to inhibit the loss of nitrogen to the atmosphere in the form of N2O. Targeting denitrification microbes directly could be one of the mitigation approaches. However, minimal attempts have been devoted towards the development of denitrification inhibitors. In this study, we aimed to investigate the molecular docking behavior of the nitrous oxide reductase (N2OR) and nitrite reductase (NIR) involved in the microbial denitrification pathway. Specifically, in silico screening was performed to detect the inhibitors of nitrous oxide reductase (N2OR) and nitrite reductase (NIR) using the PatchDock tool. Additionally, a toxicity analysis based on insecticide-likeness, Bee-Tox screening, and a STITCH analysis were performed using the SwissADME, Bee-Tox, and pkCSM free online servers, respectively. Among the twenty-two compounds tested, nine ligands were predicted to comply well with the TICE rule. Furthermore, the Bee-Tox screening revealed that none of the selected 22 ligands exhibited toxicity on honey bees. The STITCH analysis showed that two ligands, namely procyanidin B2 and thiocyanate, have interactions with both the Paracoccus denitrificans and Hyphomicrobium denitrificans microbial proteins. The molecular docking results indicated that ammonia exhibited the second least atomic contact energy (ACE) of -15.83 kcal/mol with Paracoccus denitrificans nitrous oxide reductase (N2OR) and an ACE of -15.20 kcal/mol with Hyphomicrobium denitrificans nitrite reductase (NIR). The inhibition of both the target enzymes (N2OR and NIR) supports the view of a low denitrification property and suggests the potential future applications of natural/synthetic compounds as significant nitrification inhibitors.

13.
Environ Res ; 233: 116482, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37352952

RESUMO

The modern food sector demands versatile nanocomposites of polymers for food to wrappers to inactivate germs linked to foods in order to ensure quality throughout the packaging process. Recently, it has become quite appealing to use zinc oxide nanocomposite with polyvinyl alcohol (PVA) assistance for food storage containers. Variable combinations of zinc acetate and Capparis zeylanica leaf extract (3:1, 1:7, 1:3, and 1:1) were used to create nanostructured ZnO at the desired pH (10.5). ZnO/PVA nanocomposites films were created with different weight % of (16, 13, 9 and 5%) ZnO nanoparticles by using solution casting method. The generated ZnO and ZnO/PVA nanocomposites (NCs) were characterized using analytical techniques like X-ray diffraction spectroscopy (XRD), ultraviolet spectroscopic analysis (UV-Vis), Fourier-transform infrared analysis (FT-IR), and field emission scanning electron microscopic study (FE-SEM). The generated ZnO and ZnO/PVA NCs were tested for their efficacy as antibacterial agents against Gram + ve (Streptococcus pyogenes, Staphylococcus aureus) and Gram -ve (Pseudomonas aeruginosa, and E. coli) bacteria. Under UV-visible irradiation, the methylene blue (MB) breakdown caused by the fabricated undoped ZnO and ZnO/PVA nanomixture was investigated. The FE-SEM investigation for synthesized ZnO from a 1:1 ratio exhibited spherical shaped appearance. However, the nanocomposite made with 5% ZnO showed equally scattered nanoflake particles in the matrix of PVA film as well as on the surface. The XRD results showed that ZnO synthesized with a higher proportion of plant extract produced smaller crystallites, whereas ZnO synthesized with a lower percentage of plant extract produced bigger crystallite sizes. The optimum concentration for the breakdown of methylene blue (MB) among the various concentrations examined was 5% ZnO/PVA. Furthermore, a study of the biomedical efficiency of undoped ZnO and ZnO/PVA revealed that 5% ZnO/PVA had the potential antibacterial efficacies.


Assuntos
Capparis , Nanocompostos , Óxido de Zinco , Óxido de Zinco/química , Álcool de Polivinil/química , Espectroscopia de Infravermelho com Transformada de Fourier , Escherichia coli , Azul de Metileno/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanocompostos/química , Extratos Vegetais/química , Difração de Raios X
14.
Environ Res ; 229: 115985, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37116681

RESUMO

The purpose of this research was to look into the spectral categorization of fraction 7a from the Cymodocea serrulata ethyl acetate extract employing 1H as well as 13C NMR and FTIR techniques. Besides this, the antifungal (Candida tropicalis, Candida parapsilosis, Candida albicans, and Candida glabrata), antioxidant, and antidiabetic activities were also determined through in-vitro studies. Surprisingly, the 1H and 13C NMR analyses revealed that fraction 7a contains the most aliphatic and the least aromatic compounds. FTIR analysis revealed that the test fraction 7a contains the most active functional groups related to alkanes, phenols, esters, and amide groups. At a dosage of 500 µg mL-1, the fraction 7a does have outstanding antifungal activity against fungal pathogens such as Candida tropicalis, C. parapsilosis, C. albicans, and C. glabrata. The results suggest that the fraction 7a does have excellent anti-candida activity against candidiasis-causing fungal pathogens. This fraction 7a also demonstrated fine dose dependent antioxidant and antidiabetic activities.


Assuntos
Antifúngicos , Candida , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antioxidantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana
15.
Environ Res ; 227: 115782, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36990196

RESUMO

In recent years, the biosynthesis of silver (Ag) nanoparticles has attracted a great deal of interest for applications in biomedicine and bioremediation. In the present study, Gracilaria veruccosa extract was used to synthesize Ag nanoparticles for investigating their antibacterial and antibiofilm potentials. The color shift from olive green to brown indicated the synthesis of AgNPs by plasma resonance at 411 nm. Physical and chemical characterization revealed that AgNPs of 20-25 nm sizes were synthesized. Detecting functional groups, such as carboxylic acids and alkenes, suggested that the bioactive molecules in the G. veruccosa extract assisted the synthesis of AgNPs. X-ray diffraction verified the s purity and crystallinity of the AgNPs with an average diameter of 25 nm, while DLS analysis showed a negative surface charge of -22.5 mV. Moreover, AgNPs were tested in vitro for antibacterial and antibiofilm efficacies against S. aureus. The minimum inhibitory concentration (MIC) of AgNPs against S. aureus was 3.8 µg/mL. Light and fluorescence microscopy proved the potential of AgNPs to disrupt the mature biofilm of S. aureus. Therefore, the present report has deciphered the potential of G. veruccosafor the synthesis of AgNPs and targeted the pathogenic bacteria S. aureus.


Assuntos
Gracilaria , Nanopartículas Metálicas , Alga Marinha , Staphylococcus aureus , Nanopartículas Metálicas/química , Prata/farmacologia , Prata/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química
16.
Int J Mol Sci ; 24(4)2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835626

RESUMO

Breast cancer (BC) is commonly diagnosed in women. BC cells are associated with altered metabolism, which is essential to support their energetic requirements, cellular proliferation, and continuous survival. The altered metabolism of BC cells is a result of the genetic abnormalities of BC cells. Risk factors can also enhance it, including age, lifestyle, hormone disturbances, etc. Other unknown BC-promoting risk factors are under scientific investigation. One of these investigated factors is the microbiome. However, whether the breast microbiome found in the BC tissue microenvironment can impact BC cells has not been studied. We hypothesized that E. coli, part of a normal breast microbiome with more presence in BC tissue, secretes metabolic molecules that could alter BC cells' metabolism to maintain their survival. Thus, we directly examined the impact of the E. coli secretome on the metabolism of BC cells in vitro. MDA-MB-231 cells, an in vitro model of aggressive triple-negative BC cells, were treated with the E. coli secretome at different time points, followed by untargeted metabolomics analyses via liquid chromatography-mass spectrometry to identify metabolic alterations in the treated BC cell lines. MDA-MB-231 cells that were not treated were used as controls. Moreover, metabolomic analyses were performed on the E. coli secretome to profile the most significant bacterial metabolites affecting the metabolism of the treated BC cell lines. The metabolomics results revealed about 15 metabolites that potentially have indirect roles in cancer metabolism that were secreted from E. coli in the culture media of MDA-MB-231 cells. The cells treated with the E. coli secretome showed 105 dysregulated cellular metabolites compared to controls. The dysregulated cellular metabolites were involved in the metabolism of fructose and mannose, sphingolipids, amino acids, fatty acids, amino sugar, nucleotide sugar, and pyrimidine, which are vital pathways required for the pathogenesis of BC. Our findings are the first to show that the E. coli secretome modulates the BC cells' energy metabolism, highlighting insights into the possibility of altered metabolic events in BC tissue in the actual BC tissue microenvironment that are potentially induced by the local bacteria. Our study provides metabolic data that could be as a basis for future studies searching for the underlying mechanisms mediated by bacteria and their secretome to alter the metabolism of BC cells.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias da Mama/metabolismo , Escherichia coli , Secretoma , Metabolômica/métodos , Metabolismo Energético , Microambiente Tumoral
17.
Environ Res ; 223: 115459, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764432

RESUMO

For wastewater treatment, a highly reliable and ecologically friendly oxidation method is always preferred. This work described the production of a new extremely effective visible light-driven Ag2Ox loaded ZnFe2O4 nanocomposties photocatalyst using a wet impregnation technique. Under visible light irradiation, the produced Ag2Ox loaded ZnFe2O4 nanocomposties were used in the photodegradation of rhodamine B (RhB) and Reactive Red 120 (RR120) dyes. Analysis using X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy revealed that Ag2Ox nanoparticles were well dispersed on the surface of ZnFe2O4 NPs and that the Ag2Ox loaded ZnFe2O4 NPs were created. When compared with bare ZnFe2O4 NPs, Ag2Ox-loaded ZnFe2O4 nanocomposites showed better photocatalytic activity for RhB and RR120 degradation under visible light (>420 nm) illumination. The reaction kinetics and degradation methodology, in addition to the photocatalytic degradation functions of Ag2Ox-loaded ZnFe2O4 nanocomposites, were thoroughly investigated. The 3 wt% Ag2Ox loaded ZnFe2O4 nanocomposites have a 99% removal efficiency for RhB and RR120, which is about 2.4 times greater than the ZnFe2O4 NPs and simple combination of 1 wt% and 2 wt% Ag2Ox loaded ZnFe2O4 nanocomposites. Furthermore, the 3 wt% Ag2Ox loaded ZnFe2O4 nanocomposites demonstrated consistent performance without decreasing activity throughout 3 consecutive cycles, indicating a potential approach for the photo-oxidative destruction of organic pollutants as well as outstanding antibacterial capabilities. According to the findings of the experiments, produced new nanoparticles are an environmentally friendly, cost-efficient option for removing dyes, and they were successful in suppressing the development of Gram-negative and Gram-positive bacteria.


Assuntos
Poluentes Ambientais , Óxidos , Luz , Bactérias , Corantes , Catálise
18.
Cells ; 11(21)2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36359766

RESUMO

Breast carcinomas are composed of cancer cells surrounded by various types of non-cancer cells such as fibroblasts. While active cancer-associated fibroblasts (CAFs) support tumor initiation and progression, quiescent breast stromal fibroblasts (BSFs) inhibit these effects through various cytokines such as osteoprotegerin (OPG). We showed here that OPG is upregulated in CAFs as compared to their adjacent normal tumor counterpart fibroblasts. Interestingly, breast cancer cells can upregulate OPG in BSFs in an IL-6-dependent manner through the IL-6/STAT3 pathway. When upregulated by ectopic expression, OPG activated BSFs through the NF-κB/STAT3/AUF1 signaling pathway and promoted their paracrine pro-carcinogenic effects in an IL-6-dependent manner. In addition, this increase in the OPG level enhanced the potential of BSFs to promote the growth of humanized orthotopic tumors in mice. However, specific OPG knock-down suppressed active CAFs and their paracrine pro-carcinogenic effects. Similar effects were observed when CAF cells were exposed to the pure recombinant OPG (rOPG) protein. Together, these findings show the importance of OPG in the activation of stromal fibroblasts and the possible use of rOPG or inhibitors of the endogenous protein to target CAFs as precision cancer therapeutics.


Assuntos
Neoplasias da Mama , Interleucina-6 , Osteoprotegerina , Fator de Transcrição STAT3 , Animais , Camundongos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Interleucina-6/metabolismo , Osteoprotegerina/metabolismo , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Regulação para Cima , Humanos , Feminino
19.
Cells ; 11(19)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36231115

RESUMO

The genetic architecture of mitochondrial disease continues to expand and currently exceeds more than 350 disease-causing genes. Bi-allelic variants in RTN4IP1, also known as Optic Atrophy-10 (OPA10), lead to early-onset recessive optic neuropathy, atrophy, and encephalopathy in the afflicted patients. The gene is known to encode a mitochondrial ubiquinol oxidoreductase that interacts with reticulon 4 and is thought to be a mitochondrial antioxidant NADPH oxidoreductase. Here, we describe two unrelated consanguineous families from the northern region of Saudi Arabia harboring a missense variant (RTN4IP1:NM_032730.5; c.475G

Assuntos
Encefalopatias , Atrofia Óptica , Antioxidantes , Proteínas de Transporte/genética , Humanos , Proteínas Mitocondriais/genética , Mutação/genética , NADP/genética , Atrofia Óptica/genética , Oxirredutases/genética , Arábia Saudita
20.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36233318

RESUMO

The relationship between lipid metabolism and bone mineral density (BMD) is still not fully elucidated. Despite the presence of investigations using osteoporotic animal models, clinical studies in humans are limited. In this work, untargeted lipidomics profiling using liquid chromatography-mass spectrometry (LC-MS) analysis of human serum samples was performed to identify the lipidomics profile associated with low bone mineral density (LBMD), with a subsequent examination of potential biomarkers related to OP risk prediction or progression. A total of 69 participants were recruited for this cohort study, including the osteoporotic group (OP, n = 25), osteopenia group (ON, n = 22), and control (Ctrl, n = 22). The LBMD group included OP and ON patients. The lipidomics effect of confounding factors such as age, gender, lipid profile, body mass index (BMD), chronic diseases, and medications was excluded from the dataset. The results showed a clear group separation and clustering between LBMD and Ctrl (Q2 = 0.944, R2 = 0.991), indicating a significant difference in the lipids profile. In addition, 322 putatively identified lipid molecules were dysregulated, with 163 up- and 159 down-regulated in LBMD, compared with the Ctrl. The most significantly dysregulated subclasses were phosphatidylcholines (PC) (n = 81, 25.16% of all dysregulated lipids 322), followed by triacylglycerol (TG) (n = 65, 20.19%), and then phosphatidylethanolamine (PE) (n = 40, 12.42%). In addition, groups of glycerophospholipids, including LPC (7.45%), LPE (5.59%), and PI (2.48%) were also dysregulated as of LBMD. These findings provide insights into the lipidomics alteration involved in bone remodeling and LBMD. and may drive the development of therapeutic targets and nutritional strategies for OP management.


Assuntos
Doenças Ósseas Metabólicas , Lipidômica , Animais , Biomarcadores , Densidade Óssea , Estudos de Coortes , Humanos , Fosfatidilcolinas , Fosfatidiletanolaminas , Triglicerídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...